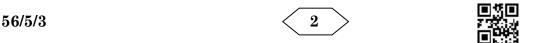
Series HFG1E/5	प्रश्न-पत्र कोड Q.P. Code 56/5/
रोल नं.	परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका व
Roll No.	मुख-पृष्ठ पर अवश्य लिखें।
	Candidates must write the Q.P. Cod on the title page of the answer-book.
	। विज्ञान (सैद्धांतिक)
CHEM नेर्धारित समय: 3 घण्टे	ISTRY (Theory) अधिकतम अंक : 7
Time allowed : 3 hours	Maximum Marks : 7
पर लिखें । कृपया जाँच कर लें कि इस प्रश्न-पत्र में । कृपया प्रश्न का उत्तर लिखना शुरू करने इस प्रश्न-पत्र को पढ़ने के लिए 15 मिन	गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृ 35 प्रश्न हैं। से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। ट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.3
प्रश्न–पत्र में दाहिने हाथ की ओर दिए पर लिखें। कृपया जाँच कर लें कि इस प्रश्न–पत्र में कृपया प्रश्न का उत्तर लिखना शुरू करने इस प्रश्न–पत्र को पढ़ने के लिए 15 मिन	गए प्रश्न–पत्र कोड को परीक्षार्थी उत्तर–पुस्तिका के मुख–पृ 35 प्रश्न हैं। से पहले, उत्तर–पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। ट का समय दिया गया है। प्रश्न–पत्र का वितरण पूर्वाह्न में 10.3 10.30 बजे तक परीक्षार्थी केवल प्रश्न–पत्र को पढ़ेंगे और इ
प्रश्न-पत्र में दाहिने हाथ की ओर दिए पर लिखें। कृपया जाँच कर लें कि इस प्रश्न-पत्र में कृपया प्रश्न का उत्तर लिखना शुरू करने इस प्रश्न-पत्र को पढ़ने के लिए 15 मिन बजे किया जाएगा। 10.15 बजे से 1 अवधि के दौरान वे उत्तर-पुस्तिका पर के Please check that this questi	गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृ 35 प्रश्न हैं। से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। ट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.3 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इ तोई उत्तर नहीं लिखेंगे। ion paper contains 23 printed pages.
प्रशन-पत्र में दाहिने हाथ की ओर दिए पर लिखें। कृपया जाँच कर लें कि इस प्रश्न-पत्र में कृपया प्रश्न का उत्तर लिखना शुरू करने इस प्रश्न-पत्र को पढ़ने के लिए 15 मिन बजे किया जाएगा। 10.15 बजे से 1 अवधि के दौरान वे उत्तर-पुस्तिका पर के Please check that this questi Q.P. Code given on the righ	गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृ 35 प्रश्न हैं। से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। ट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.3 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और ड तोई उत्तर नहीं लिखेंगे।
प्रश्न-पत्र में दाहिने हाथ की ओर दिए पर लिखें। कृपया जाँच कर लें कि इस प्रश्न-पत्र में कृपया प्रश्न का उत्तर लिखना शुरू करने इस प्रश्न-पत्र को पढ़ने के लिए 15 मिन बजे किया जाएगा। 10.15 बजे से 1 अवधि के दौरान वे उत्तर-पुस्तिका पर के Please check that this questi Q.P. Code given on the righ written on the title page of the Please check that this questi	गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृ 35 प्रश्न हैं। से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। ट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.3 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और ड तोई उत्तर नहीं लिखेंगे। ion paper contains 23 printed pages. In hand side of the question paper should b he answer-book by the candidate. ion paper contains 35 questions.
प्रश्न-पत्र में दाहिने हाथ की ओर दिए पर लिखें। कृपया जाँच कर लें कि इस प्रश्न-पत्र में कृपया प्रश्न का उत्तर लिखना शुरू करने इस प्रश्न-पत्र को पढ़ने के लिए 15 मिन बजे किया जाएगा। 10.15 बजे से 1 अवधि के दौरान वे उत्तर-पुस्तिका पर के Please check that this questi Q.P. Code given on the righ written on the title page of the Please check that this questi	गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृ 35 प्रश्न हैं। से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। ट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.3 0.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इ तोई उत्तर नहीं लिखेंगे। ion paper contains 23 printed pages. It hand side of the question paper should b he answer-book by the candidate. ion paper contains 35 questions. Fial number of the question in the answe
प्रश्न-पत्र में दाहिने हाथ की ओर दिए पर लिखें। कृपया जाँच कर लें कि इस प्रश्न-पत्र में कृपया प्रश्न का उत्तर लिखना शुरू करने इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनन बजे किया जाएगा। 10.15 बजे से 1 अवधि के दौरान वे उत्तर-पुस्तिका पर के Please check that this questi Q.P. Code given on the righ written on the title page of the Please check that this questi Please check that this questi Please write down the ser book before attempting it. 15 minute time has been	गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृ 35 प्रश्न हैं। से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। ट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.3 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और ड तोई उत्तर नहीं लिखेंगे। ion paper contains 23 printed pages. at hand side of the question paper should b he answer-book by the candidate. ion paper contains 35 questions. rial number of the question in the answer allotted to read this question paper. Th
प्रश्न-पत्र में दाहिने हाथ की ओर दिए पर लिखें। कृपया जाँच कर लें कि इस प्रश्न-पत्र में कृपया प्रश्न का उत्तर लिखना शुरू करने इस प्रश्न-पत्र को पढ़ने के लिए 15 मिन बजे किया जाएगा। 10.15 बजे से 1 अवधि के दौरान वे उत्तर-पुस्तिका पर के Please check that this questi Q.P. Code given on the righ written on the title page of the Please check that this questi Please check that this questi Please write down the ser book before attempting it. 15 minute time has been question paper will be distributed	गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृ 35 प्रश्न हैं। से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। ट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.3 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इ तोई उत्तर नहीं लिखेंगे। ion paper contains 23 printed pages. In hand side of the question paper should b he answer-book by the candidate. ion paper contains 35 questions. Fial number of the question in the answe
प्रश्न-पत्र में दाहिने हाथ की ओर दिए पर लिखें। कृपया जाँच कर लें कि इस प्रश्न-पत्र में कृपया प्रश्न का उत्तर लिखना शुरू करने इस प्रश्न-पत्र को पढ़ने के लिए 15 मिन बजे किया जाएगा। 10.15 बजे से 1 अवधि के दौरान वे उत्तर-पुस्तिका पर के Please check that this questi Q.P. Code given on the righ written on the title page of the Please check that this questi Please check that this questi Please write down the ser book before attempting it. 15 minute time has been question paper will be distributed	गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृ 35 प्रश्न हैं। से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। ट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.3 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और ड तोई उत्तर नहीं लिखेंगे। ion paper contains 23 printed pages. at hand side of the question paper should b he answer-book by the candidate. ion paper contains 35 questions. rial number of the question in the answer allotted to read this question paper. The buted at 10.15 a.m. From 10.15 a.m. to 10.3 ad the question paper only and will not wri
प्रश्न-पत्र में दाहिने हाथ की ओर दिए पर लिखें। कृपया जाँच कर लें कि इस प्रश्न-पत्र में कृपया प्रश्न का उत्तर लिखना शुरू करने इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनन बजे किया जाएगा। 10.15 बजे से 1 अवधि के दौरान वे उत्तर-पुस्तिका पर के Please check that this questi Q.P. Code given on the righ written on the title page of the Please check that this questi Please check that this questi Please check that this questi Please check that this questi Determine the ser book before attempting it. 15 minute time has been question paper will be distri a.m., the candidates will rea any answer on the answer-book	गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृ 35 प्रश्न हैं। से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। ट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.3 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और ड तोई उत्तर नहीं लिखेंगे। ion paper contains 23 printed pages. at hand side of the question paper should b he answer-book by the candidate. ion paper contains 35 questions. rial number of the question in the answer allotted to read this question paper. The buted at 10.15 a.m. From 10.15 a.m. to 10.3 ad the question paper only and will not wri

सामान्य निर्देश :


निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में कुल 35 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-पत्र पाँच खण्डों में विभाजित है खण्ड क, ख, ग, घ तथा ङ।
- (iii) खण्ड-क: प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
- (iv) खण्ड-ख : प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के दो-दो अंकों के प्रश्न हैं।
- (v) खण्ड-ग : प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं।
- (vi) खण्ड-घ : प्रश्न संख्या 31 तथा 32 केस आधारित चार-चार अंकों के प्रश्न हैं।
- (vii) खण्ड-ङ : प्रश्न संख्या 33 से 35 तक दीर्घ-उत्तरीय प्रकार के पाँच-पाँच अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड-ख के 2 प्रश्नों में, खण्ड-ग के 2 प्रश्नों में, खण्ड-घ के 2 प्रश्नों में तथा खण्ड-ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग वर्जित है।

खण्ड – क

- 1. $[NiCl_4]^{2-}$ का चुम्बकीय आधूर्ण है :
 - (a) 1.82 BM (b) 2.82 BM
 - (c) 4.42 BM (d) 5.46 BM

[परमाणु क्रमांक : Ni = 28]

CLICK HERE

≫

1

General Instructions :

Read the following instructions very carefully and follow them :

- (i) This question paper contains **35** questions. **All** questions are compulsory.
- (ii) Question paper is divided into FIVE sections Section A, B, C, D and E.
- (iii) In section A: Question Numbers 1 to 18 are Multiple Choice (MCQ) type Questions carrying 1 mark each.
- (iv) In section B: Question Numbers 19 to 25 are Very Short Answer (VSA) type questions carrying 2 marks each.
- (v) In section C : Question Numbers 26 to 30 are Short Answer (SA) type questions carrying 3 marks each.
- (vi) In section D : Question Numbers 31 and 32 are case based questions carrying 4 marks each.
- (vii) **In section E** : Question Numbers **33** to **35** are Long Answer (LA) type questions carrying 5 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- (ix) Use of calculators is NOT allowed.

SECTION - A

- 1. The magnetic moment of $[NiCl_4]^{2-}$
 - (a) 1.82 BM (b) 2.82 BM
 - (c) 4.42 BM (d) 5.46 BM

[Atomic number : Ni = 28]

56/5/3

CLICK HERE

≫

P.T.O.

🕀 www.studentbro.in

1

25 °C पर सम्पन्न की गई अभिक्रिया के लिए निम्नलिखित प्रायोगिक वेग आँकड़े प्राप्त हुए : 2.

$A_{(g)} + B_{(g)} \rightarrow C_{(g)} + D_{(g)}$		
प्रारम्भिक $[A_{(g)}]/mol \ dm^{-3}$	प्रारम्भिक $[\mathrm{B}_{\mathrm{(g)}}]/\mathrm{mo}l~\mathrm{dm}^{-3}$	प्रारम्भिक वेग/mo $l~{ m dm^{-3}s^{-1}}$
3.0×10^{-2}	$2.0 imes 10^{-2}$	1.89×10^{-4}
3.0×10^{-2}	4.0×10^{-2}	1.89×10^{-4}
6.0×10^{-2}	4.0×10^{-2}	$7.56 imes10^{-4}$
$A_{(\alpha)}$ और $B_{(\alpha)}$ के प्रति कोटि क्य	ग हैं ?	

(g)	(g)	
	$\mathrm{A}_{\mathrm{(g)}}$ के प्रति कोटि	$\mathrm{B}_{\mathrm{(g)}}$ के प्रति कोटि
(a)	शून्य	द्वितीय
(b)	प्रथम	शून्य
(c)	द्वितीय	शून्य
(d)	द्वितीय	प्रथम

निम्नलिखित मानक इलेक्ट्रोड विभव मानों पर विचार कीजिए : 3.

 ${\rm Sn}^{2+}_{(aq)} + 2e^- \rightarrow {\rm Sn}_{(s)} E^\circ = -0.14 V$ ${\rm Fe}^{3+}_{(aq)} + e^- \rightarrow {\rm Fe}^{2+}_{(aq)} E^{\circ} = + 0.77 {\rm ~V}$ होने वाली स्वत: प्रवर्तित अभिक्रिया के लिए सेल अभिक्रिया और विभव क्या है ? $2 \text{ Fe}^{2+}_{(aq)} + \text{Sn}^{2+}_{(aq)} \rightarrow 2 \text{ Fe}^{3+}_{(aq)} + \text{Sn}_{(s)} \text{ E}^{\circ} = -0.91 \text{ V}$ (a) $2 \text{ Fe}^{3+}_{(aq)} + \text{Sn}_{(s)} \rightarrow 2 \text{ Fe}^{2+}_{(aq)} + \text{Sn}^{2+}_{(aq)} \text{E}^{\circ} = + 0.91 \text{ V}$ (b) $2 \text{ Fe}^{2+}_{(aq)} + \text{Sn}^{2+}_{(aq)} \rightarrow 2 \text{ Fe}^{3+}_{(aq)} + \text{Sn}_{(s)} \text{ E}^{\circ} = + 0.91 \text{ V}$ (c) $2 \text{ Fe}^{3+}_{(aq)} + \text{Sn}_{(s)} \rightarrow 2 \text{ Fe}^{2+}_{(aq)} + \text{Sn}^{2+}_{(aq)} \text{E}^{\circ} = + 1.68 \text{ V}$ (d) निम्न में से कौन सा सेल अपोलो अंतरिक्ष कार्यक्रम में प्रयुक्त किया गया था ? 1 (b) डेन्यल सेल मर्क्यूरी सेल (a) $H_2 - O_2$ ईंधन सेल शुष्क सेल (d) (c) निम्नलिखित ऐल्कोहॉलों में से किसका ऑक्सीकरण नहीं होगा ? 1 (a) ब्यूटेनॉल (b) ब्यूटेन-2-ऑल

(c) 2-मेथिलब्यूटेन-2-ऑल (d) 3-मेथिलब्यूटेन-2-ऑल

56/5/3

4.

5.

1

1

Get More Learning Materials Here :

CLICK HERE >>

2. The following experimental rate data were obtained for a reaction carried out at 25 $^{\rm o}{\rm C}$:

1

1

1

$A_{(g)} + B_{(g)} \rightarrow C_{(g)} + D_{(g)}$		
Initial $[A_{(g)}]/mol dm^{-3}$	Initial $[B_{(g)}]/mol \ dm^{-3}$	Initial rate/mo $l~{ m dm^{-3}s^{-1}}$
3.0×10^{-2}	2.0×10^{-2}	$1.89 imes 10^{-4}$
3.0×10^{-2}	4.0×10^{-2}	$1.89 imes 10^{-4}$
$6.0 imes 10^{-2}$	$4.0 imes 10^{-2}$	7.56×10^{-4}

What are the orders with respect to $A_{(g)}$ and $B_{(g)}\,?$

	Order with respect to $A_{(g)}$	Order with respect to $B_{(g)}$
(a)	Zero	Second
(b)	First	Zero
(c)	Second	Zero
(d)	Second	First

3. Consider the following standard electrode potential values :

$$Sn^{2+}_{(aq)} + 2e^{-} \rightarrow Sn_{(s)}$$
 $E^{\circ} = -0.14 \text{ V}$
 $Fe^{3+}_{(aq)} + e^{-} \rightarrow Fe^{2+}_{(aq)}$ $E^{\circ} = +0.77 \text{ V}$
What is the cell reaction and potential for the spontaneous reaction that occurs ?

(a)
$$2 \operatorname{Fe}^{2+}_{(aq)} + \operatorname{Sn}^{2+}_{(aq)} \rightarrow 2 \operatorname{Fe}^{3+}_{(aq)} + \operatorname{Sn}_{(s)} E^{\circ} = -0.91 \text{ V}$$

(b) $2 \operatorname{Fe}^{3+}_{(aq)} + \operatorname{Sn}_{(s)} \rightarrow 2 \operatorname{Fe}^{2+}_{(aq)} + \operatorname{Sn}^{2+}_{(aq)} E^{\circ} = +0.91 \text{ V}$
(c) $2 \operatorname{Fe}^{2+}_{(aq)} + \operatorname{Sn}^{2+}_{(aq)} \rightarrow 2 \operatorname{Fe}^{3+}_{(aq)} + \operatorname{Sn}_{(s)} E^{\circ} = +0.91 \text{ V}$
(d) $2 \operatorname{Fe}^{3+}_{(aq)} + \operatorname{Sn}_{(s)} \rightarrow 2 \operatorname{Fe}^{2+}_{(aq)} + \operatorname{Sn}^{2+}_{(aq)} E^{\circ} = +1.68 \text{ V}$

4. Which of the following cell was used in Apollo space programme ?

- (a) Mercury cell (b) Daniel cell
- (c) H_2-O_2 Fuel cell (d) Dry cell

5. Which of the following alcohols will not undergo oxidation? (a) Butanol (b) Butan-2-ol (c) 2-Methylbutan-2-ol (d) 3-Methylbutan-2-ol

56/5/3

6.	मोलग	र चालकता की इकाई है			1
	(a)	${ m S~cm^{-2}~mol^{-1}}$	(b)	${ m S~cm^2~mol^{-1}}$	
	(c)	$\mathrm{S}^{-1}~\mathrm{cm}^2~\mathrm{mol}^{-1}$	(d)	${ m S~cm^2~mol}$	
7.	निम्न	लिखित $1.0~{ m M}$ जलीय विलयनों में से कौन्	न अधिव	न्तम हिमांक अवनमन दर्शाएगा ?	1
	(a)	NaCl	(b)	Na_2SO_4	
	(c)	$\mathrm{C_6H_{12}O_6}$	(d)	$Al_2(SO_4)_3$	
8.	निम्न है ?	अणुओं में से किसमें काइरल केन्द्र को	तारक	चिह्न (*) द्वारा सही तरह से अंकित किया गया	1
	(a)	$\rm CH_3C^*HBrCH_3$	(b)	$\rm CH_3C^*HC{\it l}CH_2Br$	
	(c)	HOCH ₂ C*H(OH)CH ₂ OH	(d)	$\rm CH_3C*Br_2CH_3$	
9.	અમિ	क्रिया			1
	C ₆ E	$I_5 NH_2 + CHCl_3 + 3 \text{ KOH} \rightarrow A$	+ 3B -	+ $3\mathrm{C}$ में उत्पाद A है	
	(a)	C ₆ H ₅ NC	(b)	C_6H_5CN	
	(c)	$\mathrm{C_6H_5C}l$	(d)	$\rm C_6H_5NHCH_3$	
10.	प्रोटीन	नों में β-प्लीटेड शीट संरचना निम्न में से कि	सको दश	र्गाती है ?	1
	(a)	प्राथमिक संरचना	(b)	द्वितीयक संरचना	
	(c)	तृतीयक संरचना	(d)	चतुष्क संरचना	
11.	I से I	IV तक चार अर्ध अभिक्रियाएँ नीचे दर्शा	ईि गई हैं	:	1
	I.	$2\mathrm{C}\mathit{l}^{\!-}\!\rightarrow\mathrm{C}\mathit{l}_{2}+2\mathrm{e}^{\!-}$			
	II.	$4\mathrm{OH^-} \rightarrow \mathrm{O_2} + 2\mathrm{H_2O} + 2\mathrm{e^-}$			
	III.	$Na^+ + e^- \rightarrow Na$			
	IV.	$2\mathrm{H^{+}}+2\mathrm{e^{-}}\rightarrow\mathrm{H}_{2}$			
		से कौन सी दो अभिक्रियाएँ बहुत अधि ।–अपघटन किया जाता है ?	धेक संभ	गवनीय हैं जब सांद्र लवण-जल (ब्राइन) का	
	પઘુલ (a)	ा और III	(b)	I और IV	
	. ,	II और III	. ,	II और IV	
	(0)		(u)		
56/5	5/3	<	6		

Get More Learning Materials Here : 📕

6.	(a)	unit of molar conductivity is $S \text{ cm}^{-2} \text{ mol}^{-1}$	(b)		1
	(c)	$\mathrm{S}^{-1}\mathrm{cm}^2\mathrm{mol}^{-1}$	(d)	${ m S~cm^2~mol}$	
7.		of the following 1.0 M aqueou zing point depression ?	ıs solı	utions, which one will show largest	1
	(a)	NaCl	(b)	Na_2SO_4	
	(c)	$\mathrm{C_6H_{12}O_6}$	(d)	$Al_2(SO_4)_3$	
8.		ich of the following molecules n an asterisk (*) ?	s has	a chiral centre correctly labelled	1
	(a)	$\rm CH_3C^*HBrCH_3$	(b)	$\rm CH_3C^{*}HC{\it l}CH_2Br$	
	(c)	$\mathrm{HOCH}_{2}\mathrm{C*H}(\mathrm{OH})\mathrm{CH}_{2}\mathrm{OH}$	(d)	$\rm CH_3C*Br_2CH_3$	
9.	In t	he reaction			1
	C ₆ H	$I_5 NH_2 + CHCl_3 + 3 \text{ KOH} \rightarrow A - A$	+ 3B -	+ 3C the product A is	
	(a)	C_6H_5NC	(b)	C_6H_5CN	
	(c)	$\mathrm{C_6H_5C}l$	(d)	$\rm C_6H_5NHCH_3$	
10.	β-pl	eated sheet structure in protei	ns rei	fers to	1
	(a)	primary structure	(b)	secondary structure	
	(c)	tertiary structure	(d)	quaternary structure	
11.	Fou	r half reactions I to IV are sho	wn be	elow :	1
	I.	$2\mathrm{C}l^{\!-} \!\rightarrow \mathrm{C}l_2 + 2\mathrm{e}^{\!-}$			
	II.	$4\mathrm{OH^-}\!\rightarrow\mathrm{O}_2+2\mathrm{H}_2\mathrm{O}+2\mathrm{e}^-$			
	III.	$Na^+ + e^- \rightarrow Na$			
	IV.	$2\mathrm{H^{+}}+2\mathrm{e^{-}}\rightarrow\mathrm{H}_{2}$			
		ich two of these reactions are ne is electrolysed ?	most	likely to occur when concentrated	
	(a)	I and III	(b)	I and IV	
	(c)	II and III	(d)	II and IV	
56/5	/3	<	7		.0.

Get More Learning Materials Here : 📕

r www.studentbro.in

12. संक्रमण धातुओं का कौन सा गुणधर्म इन्हें उत्प्रेरक की भाँति व्यवहार करने योग्य बनाता है ?

- (a) उच्च गलनांक (b) उच्च आयनन एन्थैल्पी
- (c) मिश्रातु का निर्माण (d) परिवर्तनीय ऑक्सीकरण अवस्थाएँ

13. नाइट्रोबेन्जीन को ऐनिलीन में अपचयित करने के लिए निम्न में से कौन एक अच्छा चुनाव नहीं होगा ?

- (a) $\text{LiA}l\text{H}_4$ (b) H_2/Ni
- (c) Fe और HCl (d) Sn और HCl
- 14. निम्न में से किसका pK_a मान न्यूनतम है ?
 - (a) $CH_3 COOH$ (b) $O_2N CH_2 COOH$
 - (c) $Cl CH_2 COOH$ (d) HCOOH

प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं – जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए।

- (a) अभिकथन (A) और कारण (R) दोनों सहीं हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और कारण (R) दोनों सहीं हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (c) अभिकथन (A) सही है, परन्तु कारण (R) गलत है।
- (d) अभिकथन (A) गलत है, परन्तु कारण (R) सही है।
- 15. अभिकथन (A) : DNA और RNA अणुओं की रीढ़ विषमचक्रीय क्षारक, पेन्टोस शर्करा और फॉस्फेट समूह से मिलकर बनी होती है।
 - **कारण (R)** : न्यूक्लिओटाइडें और न्यूक्लिओसाइडें फॉस्फेट समूह की उपस्थिति में परस्पर भिन्नता दर्शाती हैं।

CLICK HERE

>>

8

1

1

1

1

Get More Learning Materials Here : 💶

56/5/3

12.	Which property	of transition	metals enables	s them to behave	as catalysts?	1
	frindin proporty	01 01 00101010101	111000010 011000100		as caralyses .	_

- (a) High melting point (b) High ionisation enthalpy
- (c) Alloy formation (d) Variable oxidation states

13. Which of the following would not be a good choice for reducing nitrobenzene to aniline ?

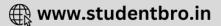
- (a) LiA/H_4 (b) H_2/Ni
- (c) Fe and HCl (d) Sn and HCl
- 14. Which one of the following has lowest pK_a value ?
 - (a) $CH_3 COOH$ (b) $O_2N CH_2 COOH$
 - (c) $Cl CH_2 COOH$ (d) HCOOH

For questions number 15 to 18, two statements are given – one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below :

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.
- 15. Assertion (A) : The backbone of DNA and RNA molecules is a chain consisting of heterocyclic base, pentose sugar and phosphate group.1

Reason (R) : Nucleotides and nucleosides mainly differ from each other in presence of phosphate group.

56/5/3



P.T.O.

1

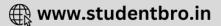
1

: अभिक्रिया की कोटि प्राथमिक एवं जटिल दोनों प्रकार की अभिक्रियाओं पर लागू 16. अभिकथन (A) होती है । 1 : जटिल अभिक्रियाओं के लिए आण्विकता का कोई अर्थ नहीं होता। कारण (R) : ऐल्डोल संघनन में अंतिम उत्पाद सदैव α, β-असंतृप्त कार्बोनिल यौगिक होता है। 17. अभिकथन (A) 1 : संयुग्मन के कारण α, β-असंतुप्त कार्बोनिल यौगिक स्थायी हो जाते हैं। कारण (R) : [Co(NH₃)₅ SO₄] Cl, सिल्वर नाइट्रेट विलयन के साथ सफेद अवक्षेप देता है। अभिकथन (A) 1 18. : संकुल वियोजित होकर $\mathrm{C}l^-$ और $\mathrm{SO}_4^{\ 2^-}$ आयन देता है। कारण (R)

खण्ड – ख

- 19. फ़ीनॉल और साइक्लोहेक्सेनॉल युगल के लिए निम्न के उत्तर दीजिए : $2 \times 1 = 2$
 - (a) साइक्लोहेक्सेनॉल की तुलना में फ़ीनॉल अधिक अम्लीय क्यों होता है ?
 - (b) दोनों के मध्य विभेद करने के लिए एक रासायनिक परीक्षण दीजिए।

20. (a) निम्नलिखित में से कौन सी स्पीशीज़ लिगंड की भाँति कार्य नहीं कर सकती है ? कारण दीजिए । OH⁻, NH₄⁺, CH₃NH₂, H₂O $2 \times 1 = 2$


(b) संकुल $[Co(NH_3)_5 (NO_2)]Cl_2$ लाल रंग का है । इसके बंधनी समावयव का आई.यू.पी.ए.सी. नाम दीजिए ।

- 21. किसी रासायनिक अभिक्रिया का ताप बढ़ाने पर उसके वेग स्थिरांक ${f k}$ और सक्रियण ऊर्जा ${f E}_{a}$ को क्या होता है ? औचित्य सिद्ध कीजिए। ${f 2}$
- 22. नाभिकरागी प्रतिस्थापन अभिक्रिया के प्रति हैलोऐरीन अभिक्रियाशील क्यों नहीं होते हैं ? दो कारण दीजिए।

(10)

>>

56/5/3

2

 Assertion (A) : Order of reaction is applicable to elementary as well as complex reactions.

Reason (R): For a complex reaction molecularity has no meaning.

17. Assertion (A) : The final product in Aldol condensation is always α , β -unsaturated carbonyl compound.

18. Assertion (A) : $[Co(NH_3)_5 SO_4] Cl$ gives a white precipitate with silver nitrate solution.

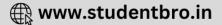
Reason (R) : The complex dissociates to give Cl^- and SO_4^{2-} ions.

SECTION – B

- 19. For the pair phenol and cyclohexanol, answer the following : $2 \times 1 = 2$
 - (a) Why is phenol more acidic than cyclohexanol?
 - (b) Give one chemical test to distinguish between the two.
- 20. (a) Which of the following species cannot act as a ligand ? Give reason. OH⁻, NH₄⁺, CH₃NH₂, H₂O $2 \times 1 = 2$
 - (b) The complex [Co(NH₃)₅(NO₂)]Cl₂ is red in colour. Give IUPAC name of its linkage isomer.
- 21. What happens to the rate constant k and activation energy E_a as the temperature of a chemical reaction is increased ? Justify. 2
- 22. Why haloarenes are not reactive towards nucleophilic substitution reaction ? Give two reasons.

11

>>


2

1

1

1

56/5/3

Reason (R) : α , β -unsaturated carbonyl compounds are stabilised due to conjugation.

- मानक अवस्था में हो रही किसी स्वत: प्रवर्तित रेडॉक्स अभिक्रिया के लिए E°सेल और 23.(a) (i) $\Delta \mathrm{G}^\circ$ के क्या चिह्न (धनात्मक/ऋणात्मक) होने चाहिए ? $2 \times 1 = 2$
 - फैराडे के वैद्युत अपघटन का पहला नियम बताइए। (ii)

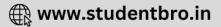
अथवा

- 298 K पर निम्न सेल का emf परिकलित कीजिए : (b) $Fe_{(s)} | Fe^{2+} (0.01M) || H^{+}_{(1M)} | H_{2(g)} (1 bar), Pt_{(s)}$ दिया है $E^{\circ}_{\hat{H}een} = 0.44 \text{ V}.$ 2
- सल्फैनिलिक अम्ल के लिए ज्विटर (उभयाविष्ट) आयन की संरचना खींचिए। $2 \times 1 = 2$ 24.(a) (i)
 - ऐनिलीन में $-\mathrm{NH}_{2}$ समूह के सक्रियण प्रभाव को कैसे नियंत्रित किया जा सकता है ?(ii)

अथवा

- निर्मित मुख्य उत्पाद देते हुए अभिक्रिया पूर्ण कीजिए : (b) $2 \times 1 = 2$ (i) $N_2^+ Cl^ \xrightarrow{\text{CH}_3\text{CH}_2\text{OH}} \rightarrow$
 - ब्रोमोएथेन का प्रोपेनेमीन में रूपान्तरण कीजिए। (ii)
- 25. ग्लूकोस को हाइड्रॉक्सिलऐमीन के साथ गरम करने की अभिक्रिया दीजिए। इस अभिक्रिया से किस समूह की उपस्थिति की पुष्टि होती है ? 2

खण्ड – ग


- निम्नलिखित किन्हीं **तीन** प्रेक्षणों के लिए कारण दीजिए : 26. $3 \times 1 = 3$
 - ग्लूकोस का पेन्टाऐसीटेट, हाइड्रॉक्सिलऐमीन के साथ अभिक्रिया नहीं करता। (a)
 - एमीनो अम्ल लवणों की भाँति गुण दर्शाते हैं। (b)
 - जल में विलेय विटामिनों की पूर्ति हमारे आहार में नियमित रूप से होनी चाहिए। (c)
 - DNA के दो रज्जुक एक-दुसरे के पूरक होते हैं। (d)

12

Get More Learning Materials Here :

56/5/3

- 23. (a) (i) What should be the signs (positive/negative) for E°_{Cell} and ΔG° for a spontaneous redox reaction occurring under standard conditions? $2 \times 1 = 2$
 - (ii) State Faraday's first law of electrolysis.

OR

- (b) Calculate the emf of the following cell at 298 K : $Fe_{(s)} | Fe^{2+} (0.01M) || H^{+}_{(1M)} | H_{2(g)} (1 \text{ bar}), Pt_{(s)}$ Given $E^{\circ}_{Cell} = 0.44 \text{ V}.$ 2
- 24. (a) (i) Draw the zwitter ion structure for sulphanilic acid. $2 \times 1 = 2$
 - (ii) How can the activating effect of $-NH_2$ group in aniline be controlled ?

OR

- (b) (i) Complete the reaction with the main product formed : $2 \times 1 = 2$ $N_2^+ Cl^-$ <u>CH_3CH_2OH</u>
 - (ii) Convert Bromoethane to Propanamine.
- 25. Give the reaction of heating glucose with hydroxylamine. Presence of which group is confirmed by this reaction ?2

SECTION – C

- 26. Give reasons for **any 3** of the following observations : $3 \times 1 = 3$
 - (a) Penta-acetate of glucose does not react with hydroxylamine.
 - (b) Amino acids behave like salts.
 - (c) Water soluble vitamins must be taken regularly in diet.
 - (d) The two strands in DNA are complimentary to each other.

56/5/3

CLICK HERE

>>>

- 27. (a) क्रिस्टल क्षेत्र सिद्धांत के आधार पर ${
 m d}^4$ के लिए प्रबल क्षेत्र लिगंड के साथ इलेक्ट्रॉनिक विन्यास लिखिए जिसके लिए $\Delta_0 > {
 m P}$ है। 1 + 2 = 3
 - (b) [Ni(H₂O)₆]²⁺ का विलयन हरा होता है परन्तु [Ni(CO)₄] का विलयन रंगहीन । व्याख्या कीजिए । [परमाणु क्रमांक : Ni = 28]
- 28. (a) (i) फ़ीनॉलों में C O आबंध लम्बाई मेथेनॉल की अपेक्षा कम क्यों होती है ? $3 \times 1 = 3$
 - (ii) निम्नलिखित को बढ़ते क्वथनांक के क्रम में व्यवस्थित कीजिए :
 एथॉक्सीएथेन, ब्यूटेनैल, ब्यूटेनॉल, n-ब्यूटेन
 - (iii) ऐनिसोल से फ़ीनॉल कैसे विरचित किया जा सकता है ? अभिक्रिया दीजिए।

अथवा

(b) (i) निम्नलिखित अभिक्रिया की क्रियाविधि लिखिए :
$$2+1=3$$

$$\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{OH} \xrightarrow{\mathrm{H}_{2}\mathrm{SO}_{4}} \mathrm{CH}_{3}\mathrm{CH}_{2} - \mathrm{O} - \mathrm{CH}_{2}\mathrm{CH}_{3} + \mathrm{H}_{2}\mathrm{O}$$

- (ii) हाइड्रोबोरॉनन ऑक्सीकरण अभिक्रिया को उदाहरण सहित समझाइए।
- 29. (a) एक समीकरण के साथ सैन्डमायर अभिक्रिया दर्शाइए। 1 + 2 = 3
 - (b) जलीय विलयन में $(CH_3)_3N$ की तुलना में $(CH_3)_2NH$ अधिक क्षारकीय है, व्याख्या कीजिए।
- 30. (a) 318 K पर अभिक्रिया 1 + 2 = 3 $2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$ के लिए अभिक्रिया वेग परिकलित कीजिए यदि $N_2O_{5(g)}$ के लोप होने का वेग 1.4×10^{-3} m s⁻¹ है।

>>

(b) एक प्रथम कोटि अभिक्रिया के लिए $t_{99\%} = 2t_{90\%}$ सम्बन्ध व्युत्पन्न कीजिए ।

- 27. (a) On the basis of crystal field theory, write the electronic configuration for d⁴ with a strong field ligand for which $\Delta_0 > P$. 1 + 2 = 3
 - (b) A solution of [Ni(H₂O)₆]²⁺ is green but a solution of [Ni(CO)₄] is colourless. Explain.
 [Atomic number : Ni = 28]

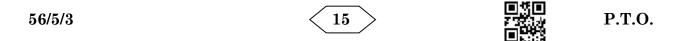
28. (a) (i) Why is the C - O bond length in phenols less than that in methanol?

 $3 \times 1 = 3$

- (ii) Arrange the following in order of increasing boiling point :Ethoxyethane, Butanal, Butanol, n-butane
- (iii) How can phenol be prepared from anisole ? Give reaction.

OR

- (b) (i) Give mechanism of the following reaction : 2 + 1 = 3 $CH_3CH_2OH \xrightarrow{H_2SO_4}{413 \text{ K}} CH_3CH_2 - O - CH_2CH_3 + H_2O$
 - (ii) Illustrate hydroboration oxidation reaction with an example.
- 29. (a) Illustrate Sandmeyer's reaction with an equation. 1 + 2 = 3
 - (b) Explain, why $(CH_3)_2NH$ is more basic than $(CH_3)_3N$ in aqueous solution.
- 30. (a) For the reaction 1 + 2 = 3


 $2\mathrm{N}_{2}\mathrm{O}_{5(\mathrm{g})} \rightarrow 4\mathrm{NO}_{2(\mathrm{g})}$ + $\mathrm{O}_{2(\mathrm{g})}$ at 318 K

calculate the rate of reaction if rate of disappearance of $\rm N_2O_{5(g)}$ is $1.4\times10^{-3}~m~s^{-1}.$

CLICK HERE

≫

(b) For a first order reaction derive the relationship $t_{99\%} = 2t_{90\%}$

खण्ड – घ

निम्नलिखित प्रश्न केस–आधारित प्रश्न हैं । अनुच्छेद को सावधानीपूर्वक पढ़िए और उसके पश्चात के प्रश्नों का उत्तर दीजिए :

31.

नाभिकरागी प्रतिस्थापन

हैलोऐल्केनों में नाभिकरागी प्रतिस्थापन अभिक्रिया S_N1 और S_N2 दोनों क्रियाविधियों के अनुसार संचालित की जा सकती हैं । S_N1 दो चरणों की अभिक्रिया है जबकि S_N2 एक चरण की अभिक्रिया है । कोई हैलोऐल्केन कौन सी क्रियाविधि अपनाएगा, यह कारकों पर निर्भर करता है जैसे हैलोऐल्केन की संरचना, अवशिष्ट समूह के गुणधर्म, नाभिकरागी अभिकर्मक और विलायक ।

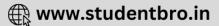
विलायक ध्रुवता के प्रभाव : S_N^1 अभिक्रिया में, अभिकर्मक से संक्रमण स्थिति की ओर निकाय की ध्रुवता में वृद्धि होती है, क्योंकि एक ध्रुवीय विलायक, अभिकर्मक की अपेक्षा संक्रमण स्थिति पर अधिक प्रभाव डालता है, फलस्वरूप सक्रियण ऊर्जा कम होती है और अभिक्रिया तीव्र गति से होती है । S_N^2 अभिक्रिया में, निकाय की ध्रुवता अभिकर्मक से संक्रमण स्थिति की ओर सामान्यत: परिवर्तित नहीं होती है और केवल आवेश परिक्षेपण होता है । इस समय, ध्रुवीय विलायक का संक्रमण स्थिति की अपेक्षा भया पर बृहत्तर स्थायित्व प्रभाव पड़ता है, जिसके कारण सक्रियण ऊर्जा में वृद्धि होती है और अभिक्रिया वेग को मन्द कर देता है । उदाहरण के लिए 25 °C पर तृतीयक क्लोरोब्यूटेन का एथेनॉल (परावैद्युतांक 24) की अपेक्षा जल (परावैद्युतांक 79) में विघटन वेग (S_N^1) 300000 गुना अधिक तीव्र होता है । 2–ब्रोमोप्रोपेन की परिशुद्ध एल्कोहॉल में NaOH के साथ अभिक्रिया वेग (S_N^2) की अपेक्षा 40% जल सहित एथेनॉल में NaOH के साथ दुगुना मंद हो जाता है । अतः विलायक की ध्रुवता का स्तर S_N^1 और S_N^2 दोनों अभिक्रियाओं पर प्रभाव डालता है, परन्तु परिणाम भिन्न होते हैं । सामान्यतः हम कह सकते हैं कि दुर्बल ध्रुवीय विलायक S_N^2 अभिक्रियाओं के लिए अनुकूल होते हैं । सामान्यतः हम कह लोपेल्केन की प्रतियक क्षेत्र त्रा की परिक्षाया जी परिशुद्ध एल्कोहॉल में S_N^1 क्रियावीधि पर आधारित है (उदाहरण के लिए S_N^1 अभिक्रियाओं के लिए अनुकूल होते हैं । सामान्यतः हम कह लकते हैं कि दुर्बल ध्रुवीय विलायक S_N^2 अभिक्रियाओं के लिए अनुकूल होते हैं । सामान्यतः हम कह लापेल्केन की प्रतिस्थापन अभिक्रिया प्रबल ध्रुवीय विलायकों में S_N^1 क्रियाविधि पर आधारित है (उदाहरण के लिए जल के साथ एथेनॉल) ।

56/5/3

SECTION – D

The following questions are case-based questions. Read the passage carefully and answer the questions that follow :

31.


Nucleophilic Substitution

Nucleophilic Substitution reaction of haloalkane can be conducted according to both $S_N 1$ and $S_N 2$ mechanisms. $S_N 1$ is a two step reaction while $S_N 2$ is a single step reaction. For any haloalkane which mechanism is followed depends on factors such as structure of haloalkane, properties of leaving group, nucleophilic reagent and solvent.

Influences of solvent polarity : In S_N^1 reaction, the polarity of the system increases from the reactant to the transition state, because a polar solvent has a greater effect on the transition state than the reactant, thereby reducing activation energy and accelerating the reaction. In $\mathrm{S}_{\mathrm{N}}2$ reaction, the polarity of the system generally does not change from the reactant to the transition state and only charge dispersion occurs. At this time, polar solvent has a great stabilizing effect on Nu than the transition state, thereby increasing activation energy and slow down the reaction rate. For example, the decomposition rate (S_N1) of tertiary chlorobutane at 25 $^\circ C$ in water (dielectric constant 79) is 300000 times faster than in ethanol (dielectric constant 24). The reaction rate $(S_N 2)$ of 2-Bromopropane and NaOH in ethanol containing 40% water is twice slower than in absolute ethanol. Hence the level of solvent polarity has influence on both S_N^{1} and S_N^2 reaction, but with different results. Generally speaking weak polar solvent is favourable for S_N^2 reaction, while strong polar solvent is favourable for $S_N 1$. Generally speaking the substitution reaction of tertiary haloalkane is based on S_N^{1} mechanism in solvents with a strong polarity (for example ethanol containing water).

56/5/3

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (a) S_N^{1} में रेसिमीकरण क्यों होता है ? 1
- (b) जल की तुलना में एथेनॉल कम ध्रुवीय क्यों होता है ?
- (c) निम्नलिखित प्रत्येक युगलों में से कौन $S_N 2$ अभिक्रिया के प्रति अधिक अभिक्रियाशील है ?

(i)
$$CH_3 - CH_2 - I$$
 अथवा $CH_3CH_2 - Cl$ (ii) $\bigcirc -Cl$ अथवा $\bigcirc -CH_2 - Cl$ 2×1

अथवा

- (c) निम्नलिखित को $S_N 1$ अभिक्रियाओं के प्रति उनकी अभिक्रियाशीलता के बढ़ते क्रम में व्यवस्थित कीजिए :
 - (i) 2-ब्रोमो-2-मेथिलब्यूटेन, 1-ब्रोमोपेन्टेन, 2-ब्रोमोपेन्टेन
 - (ii) 1-ब्रोमो-3-मेथिलब्यूटेन, 2-ब्रोमो-2-मेथिलब्यूटेन, 2-ब्रोमो-3-मेथिलब्यूटेन 2×1
- 32. राहुल ने 298 K पर विभिन्न सांद्रताओं पर जलीय KCl विलयन का प्रतिरोध ज्ञात करने के लिए व्हीटस्टोन ब्रिज से जुड़े हुए एक चालकता सेल को प्रयुक्त करते हुए एक प्रयोग व्यवस्थित किया । उसने श्रव्य आवृत्ति सीमा 550 से 5000 चक्रण प्रति सेकण्ड वाली a.c. शक्ति को व्हीटस्टोन ब्रिज से जोड़ा । शून्य विक्षेप स्थिति से प्रतिरोध का परिकलन करने के पश्चात् उसने चालकता K और मोलर चालकता ^m भी परिकलित किया और अपने पाठ्यांकों को सारणी रूप में अभिलिखित किया ।

क्रम संख्या	सांद्रता (M)	k S cm ⁻¹	$\wedge_{\mathbf{m}} \mathbf{S} \ \mathbf{cm}^2 \ \mathbf{mol}^{-1}$
1.	1.00	111.3×10^{-3}	111.3
2.	0.10	12.9×10^{-3}	129.0
3.	0.01	1.41×10^{-3}	141.0

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (a) तनुकरण के साथ चालकता क्यों घटती है ?
- (b) यदि KCl के लिए $\wedge_{\text{m}}^{\circ} 150.0 \text{ S cm}^2 \text{ mol}^{-1}$ है तो 0.01 M KCl की वियोजन मात्रा परिकलित कीजिए ।
- (c) यदि राहुल ने KCl के स्थान पर HCl प्रयुक्त किया होता तो आप \wedge_m मानों को दी गई सांद्रता के लिए KCl के मानों की अपेक्षा अधिक या कम अपेक्षित करेंगे । औचित्य सिद्ध कीजिए । 2×1

अथवा

(c) राहुल के सहपाठी अमित ने उसी प्रयोग को KCl विलयन के स्थान पर CH₃COOH विलयन के साथ दोहराया। राहुल की तुलना में उसके प्रेक्षणों में से एक प्रेक्षण लिखिए जो उसके समान था और एक प्रेक्षण जो उससे भिन्न था।
2 × 1

56/5/3

CLICK HERE

>>

1

1

1

Answer the following questions :

- (a) Why racemisation occurs in $S_N 1$?
- (b) Why is ethanol less polar than water ?
- (c) Which one of the following in each pair is more reactive towards $\rm S_N^2$ reaction ?

(i)
$$CH_3 - CH_2 - I \text{ or } CH_3CH_2 - Cl$$

(ii) $\bigcirc -Cl \text{ or } \bigcirc -CH_2 - Cl$ 2×1
OR

- (c) Arrange the following in the increasing order of their reactivity towards ${\rm S}_{\rm N}{\rm 1}$ reactions :
 - (i) 2-Bromo-2-methylbutane, 1-Bromopentane, 2-Bromopentane
 - (ii) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 2-Bromo-3-methylbutane 2×1
- 32. Rahul set-up an experiment to find resistance of aqueous KCl solution for different concentrations at 298 K using a conductivity cell connected to a Wheatstone bridge. He fed the Wheatstone bridge with a.c. power in the audio frequency range 550 to 5000 cycles per second. Once the resistance was calculated from null point he also calculated the conductivity K and molar conductivity $\wedge_{\rm m}$ and recorded his readings in tabular form.

S.No.	Conc.(M)	${ m k~S~cm^{-1}}$	$\wedge_{\mathbf{m}} \mathbf{S} \ \mathbf{cm}^2 \ \mathbf{mol}^{-1}$
1.	1.00	111.3×10^{-3}	111.3
2.	0.10	12.9×10^{-3}	129.0
3.	0.01	1.41×10^{-3}	141.0

Answer the following questions :

- (a) Why does conductivity increase though the conductivity decrease with dilution ?
- (b) If \wedge_{m}^{o} of KCl is 150.0 S cm² mol⁻¹, calculate the degree of dissociation of 0.01 M KCl.
- (c) If Rahul had used HCl instead to KCl then would you expect the \wedge_m values to be more or less than those per KCl for a given concentration. Justify. 2×1

(c) Amit a classmate of Rahul repeated the same experiment with CH_3COOH solution instead of KCl solution. Give one point that would be similar and one that would be different in his observations as compared to Rahul. 2×1

56/5/3

P.T.O.

1

1

1

1

- 33. (a) (i) कैनिज़ारो अभिक्रिया में सम्मिलित अभिक्रिया लिखिए।
 - (ii) सदृश कार्बोक्सिलिक अम्लों की तुलना में ऐल्डिहाइडों और कीटोनों के क्वथनांक कम क्यों होते हैं ?
 - (iii) एक कार्बनिक यौगिक 'A' जिसका अणुसूत्र C₅H₈O₂ है, हाइड्रैजीन के साथ अभिक्रिया करने के पश्चात् NaOH एवं ग्लाइकॉल के साथ गरम करने पर n-पेन्टेन में अपचयित हो गया । 'A' हाइड्रॉक्सिल एमीन के साथ डाइऑक्सिम बनाता है और धनात्मक आयोडोफॉर्म तथा टॉलेन परीक्षण देता है । 'A' की पहचान कीजिए और आयडोफॉर्म तथा टॉलेन परीक्षण के लिए अभिक्रिया लिखिए ।

अथवा

- (b) (i) ऐथेनल अम्ल और एथेनॉइक अम्ल में विभेद करने के लिए रासायनिक परीक्षण लिखिए।
 1+1+3=5
 - (ii) ऐल्डिहाइडों और कीटोनों के α-हाइड्रोजनों की प्रकृति अम्लीय क्यों होती है ?
 - (iii) C₄H₈O₂ अणुसूत्र का एक कार्बनिक यौगिक 'A' अम्लीय जल–अपघटन द्वारा दो यौगिक 'B' और 'C' देता है। 'C' अम्लीकृत पोटैशियम परमैंगनेट द्वारा ऑक्सीकृत होकर 'B' उत्पादित करता है। 'B' का सोडियम लवण, सोडा लाइम के साथ गरम करने पर मेथेन देता है।
 - (1) 'A', 'B' और 'C' की पहचान कीजिए।
 - (2) 'B' और 'C' में से किसका क्वथनांक उच्चतर होगा ? कारण दीजिए।
- 34. (a) (i) 1M ग्लूकोस विलयन की अपेक्षा 1M NaCl विलयन का क्वथनांक अधिक क्यों होता

 है ?

 1 + 2 + 2 = 5
 - (ii) एक अवाष्पशील विलेय 'X' (मोलर द्रव्यमान = 50 g mol⁻¹) को जब 78g बेन्जीन में घोला गया तो इसका वाष्प दाब घटकर 90% रह गया । घोले गए 'X' का द्रव्यमान परिकलित कीजिए ।
 - (iii) $MgCl_2$ के 10g को 200g जल में घोलकर बनाए गए विलयन के क्वथनांक में उन्नयन का परिकलन कीजिए, यह मानते हुए कि $MgCl_2$ पूर्णत: वियोजित हो गया है ।

(जल के लिए $K_b = 0.512 \text{ K kg mol}^{-1}$, मोलर द्रव्यमान $MgCl_2 = 95 \text{g mol}^{-1}$)

अथवा

56/5/3

CLICK HERE

≫

1 + 1 + 3 = 5

SECTION – E

- 33. (a) (i) Write the reaction involved in Cannizaro's reaction. 1 + 1 + 3 = 5
 - (ii) Why are the boiling point of aldehydes and ketones lower than that of corresponding carboxylic acids ?
 - (iii) An organic compound 'A' with molecular formula $C_5H_8O_2$ is reduced to n-pentane with hydrazine followed by heating with NaOH and Glycol. 'A' forms a dioxime with hydroxylamine and gives a positive Iodoform and Tollen's test. Identify 'A' and give its reaction for Iodoform and Tollen's test.

OR

- (b) (i) Give a chemical test to distinguish between ethanal acid and ethanoic acid. 1+1+3=5
 - (ii) Why is the α -hydrogens of aldehydes and ketones are acidic in nature ?
 - (iii) An organic compound 'A' with molecular formula $C_4H_8O_2$ undergoes acid hydrolysis to form two compounds 'B' and 'C'. Oxidation of 'C' with acidified potassium permanganate also produces 'B'. Sodium salt of 'B' on heating with soda lime gives methane.
 - (1) Identify 'A', 'B' and 'C'.
 - (2) Out of 'B' and 'C', which will have higher boiling point ? Give reason.
- 34. (a) (i) Why is boiling point of 1M NaCl solution more than that of 1M glucose solution ? 1+2+2=5
 - (ii) A non-volatile solute 'X' (molar mass = 50 g mol⁻¹) when dissolved in 78g of benzene reduced its vapour pressure to 90%. Calculate the mass of X dissolved in the solution.
 - (iii) Calculate the boiling point elevation for a solution prepared by adding 10g of $MgCl_2$ to 200g of water assuming $MgCl_2$ is completely dissociated.

(K_b for Water = 0.512 K kg mol⁻¹, Molar mass MgC l_2 = 95g mol⁻¹)

56/5/3

CLICK HERE

>>

OR

P.T.O.

- (b) (i) बेन्जीन में एथेनॉइक अम्ल के लिए वान्ट हॉफ गुणक का मान 0.5 के निकट क्यों होता
 है ?
 1 + 2 + 2 = 5
 - (ii) 2 लीटर विलयन में 25 °C पर K_2SO_4 के $2.32 \times 10^{-2}g$ घोलने पर बनने वाले विलयन का परासरण दाब, यह मानते हुए ज्ञात कीजिए कि K_2SO_4 पूर्णत: वियोजित हो गया है । (R = 0.082 L atm K⁻¹ mol⁻¹, K_2SO_4 का मोलर द्रव्यमान = 174g mol⁻¹)
 - (iii) 25.6g सल्फर को 1000g बेन्जीन में घोलने पर हिमांक में 0.512 K का अवनमन हुआ। सल्फर (S_x) का सूत्र परिकलित कीजिए।

(बेन्जीन के लिए $\rm K_{f}$ = $5.12~\rm K~kg~mol^{-1},$ सल्फर का परमाणु द्रव्यमान = $32\rm g~mol^{-1})$

- 35. (a) Cr³⁺ में अयुगलित इलेक्ट्रॉनों की संख्या लिखिए ।
 1 + 2 + 2 = 5

 (Cr का परमाणु क्रमांक = 24)
 - (b) निर्मित उत्पादों का उल्लेख करते हुए अभिक्रिया पूर्ण कीजिए :

 $Cr_2O_7^{2-} + 3H_2S + 8H^+ \rightarrow$

- (c) निम्नलिखित के कारण दीजिए :
 - (i) +3 अवस्था में ऑक्सीकरण के प्रति Fe^{2+} की तुलना में Mn^{2+} अधिक स्थायी होता है।
 - (ii) कॉपर का असाधारण रूप से धनात्मक ${E^{\,\circ}_{M}}^{2+}_{/M}$ मान होता है ।
 - (iii) [Xe] $4f^76s^2$ इलेक्ट्रॉनिक विन्यास सहित Eu^{2+} एक प्रबल अपचायक है ।

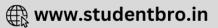
>>

- (b) (i) Why is the value of Van't Hoff factor for ethanoic acid in benzene close to 0.5? 1+2+2=5
 - (ii) Determine the osmotic pressure of a solution prepared by dissolving 2.32×10^{-2} g of K_2SO_4 in 2L of solution at 25 °C, assuming that K_2SO_4 is completely dissociated. (R = 0.082 L atm K⁻¹ mol⁻¹, Molar mass $K_2SO_4 = 174$ g mol⁻¹)
 - (iii) When 25.6g of Sulphur was dissolved in 1000g of benzene, the freezing point lowered by 0.512 K. Calculate the formula of Sulphur (S_x) .

(K_f for benzene = 5.12 K kg mol⁻¹, Atomic mass of Sulphur = 32g mol⁻¹)

- 35. (a) Write the number of unpaired electrons in Cr^{3+} . (Atomic number of Cr = 24) 1 + 2 + 2 = 5
 - (b) Complete the reaction mentioning all the products formed : ${\rm Cr_2O_7^{2-}+3H_2S+8H^+} \rightarrow$
 - (c) Account for the following :
 - (i) Mn^{2+} is more stable than Fe²⁺ towards oxidation to +3 state.
 - (ii) Copper has exceptionally positive $E_{M}^{\circ_{2+}}$ value.
 - (iii) Eu²⁺ with electronic configuration [Xe] $4f^76s^2$ is a strong reducing agent.

>>



	Marking Scheme
	Strictly Confidential
	(For Internal and Restricted use only)
	Senior Secondary School Examination, 2023
	SUBJECT: CHEMISTRY (043) (56/5/3)
Ge	neral Instructions: -
1	You are aware that evaluation is the most important process in the actual and
	correct assessment of the candidates. A small mistake in evaluation may lead
	to serious problems which may affect the future of the candidates, education
	system and teaching profession. To avoid mistakes, it is requested that before
	starting evaluation, you must read and understand the spot evaluation
_	guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and
	several other aspects. Its' leakage to public in any manner could lead to
	derailment of the examination system and affect the life and future of
	millions of candidates. Sharing this policy/document to anyone,
	publishing in any magazine and printing in News Paper/Website etc may
	invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It
	should not be done according to one's own interpretation or any other
	consideration. Marking Scheme should be strictly adhered to and religiously
	followed. However, while evaluating, answers which are based on latest
	information or knowledge and/or are innovative, they may be assessed
	for their correctness otherwise and due marks be awarded to them. In
	class-XII, while evaluating two competency-based questions, please try to
	understand given answer and even if reply is not from marking scheme
	but correct competency is enumerated by the candidate, due marks
4	should be awarded.
4	The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete
	answer. The students can have their own expression and if the expression is
	correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by
•	each evaluator on the first day, to ensure that evaluation has been carried out
	as per the instructions given in the Marking Scheme. If there is any variation,
	the same should be zero after delibration and discussion. The remaining
	answer books meant for evaluation shall be given only after ensuring that there
	is no significant variation in the marking of individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer
	CROSS 'X" be marked. Evaluators will not put right () while evaluating which
	gives an impression that answer is correct and no marks are awarded. This is
	most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each
	part. Marks awarded for different parts of the question should then be totaled
	Live and written in the left band menuin and ensined at This may be followed
	up and written in the left-hand margin and encircled. This may be followed
	strictly.
8	

9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	 Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no
14	 marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

XII_39_043_56/5/1_Chemistry # Page-**2**

MARKING SCHEME

Senior Secondary School Examination, 2023

CHEMISTRY (Subject Code-043)

[Paper Code: 56/5/3]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Mar ks
	SECTION A	
1.	(b)	1
2.	(c)	1
3.	(b)	1
4.	(c)	1
5.	(c)	1
6.	(b)	1
7.	(d)	1
8.	(b)	1
9.	(a)	1
10.	(b)	1
11.	(b)	1
12.	(d)	1
13.	(a)	1
14.	(b)	1
15.	(b)	1
16.	(b)	1
17.	(a)	1
18.	(c)	1
	SECTION- B	
19.	(a) Because phenoxide ion is more stable due to resonance.	1
	(or any other correct explanation)	
	(b) Add neutral FeCl ₃ to both the compounds, phenol gives violet colour whereas	
	cyclohexanol does not. (or any other suitable chemical test)	1
20.	(a) NH ₄ ⁺ ,	1/2
	due to the unavailability of lone pair of electrons / cannot act as a Lewis base.	1⁄2
	(b) Pentaamminenitrito-O-cobalt (III)chloride	1
21.	 k increases. Reason: k is proportional to the rate of the reaction/temperature of the reaction. 	1/2 1/2

XII_39_043_56/5/1_Chemistry # Page-**3**

	• E _a unchanged/No effect.	1/2
	Reason : E_a only depends on the nature of reactants / depends on the difference between	
	the energy of activated complex and reactants.	1/2
22.	 C – X acquires partial double bond character due to resonance. 	1
	• Carbon of $C - X$ is sp ² hybridised.	
	(or any other two correct reasons)	1
23.	(a) (i) $E^0_{cell} = + ve$ & $\Delta G^o = -ve$	1/2, 1/2
	(ii) It states that the mass of a substance deposited /liberated at the electrodes is directly proportional to the charge/quantity of electricity passed through the electrolyte.	1
	OR	
	(b) $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{2} \log \frac{[Fe^{2+}(aq)]}{[H^{+}(aq)]^{2}}$	1/2
	0.44 0.059 1 = (0.01)	
	$= 0.44 - \frac{0.059}{2} \log \frac{(0.01)}{(1)^2}$	1
	$= 0.44 - \frac{0.059}{2} \log 10^{-2}$	
	$= 0.44 - \frac{1}{2}$ log 10 -	
	= 0.499 V	1⁄2
24.	(a) (i)	
	NH_3^+	
		1
	SO ₃	
	(Zwitter ion)	
	(ii) Protecting /deactivating -NH ₂ group by acetylation or acylation.	1
	OR	
	(b) (i)	1
		1
	(ii)	
	$\frac{(11)}{KCN} = \frac{KCN}{H_2/N}$	
	CH ₃ CH ₂ Br \longrightarrow CH ₃ CH ₂ CN \longrightarrow CH ₃ CH ₂ CH ₂ NH ₂	
	or LiAlH ₄ or Na (Hg) /C ₂ H ₅ OH	1
25.		
43.	CHO CH=N–OH	
	$(CHOH)$ NH_2OH $(CHOH)$	
	$(CHOH)_4 \xrightarrow{NH_2OH} (CHOH)_4$	1
	CH ₂ OH CH ₂ OH	
	Confirms the presence of carbonyl / aldehydic group.	1
		1

CLICK HERE

》

XII_39_043_56/5/1_Chemistry # Page-4

Regional www.studentbro.in

	SECTION-C	
26.	 (a) Absence of free – CHO group. (b) Due to the presence of both acidic (-COOH) and basic (-NH₂) groups in the same molecule / formation of Zwitter ion. (c) They are excreted in urine/cannot be stored in body. (d) Because the H-bonds are formed between specific pairs of bases / pairing between A & T and between C & G. 	1 x 3
27.	(a) $t_{2g}^4 e_g^0$	1
	 (b) In [Ni(H₂O)₆]²⁺ d-d transition is possible due to unpaired electrons as H₂O is a weak field ligand. In [Ni(CO)₄] d-d transition is not possible due to no unpaired electrons as CO is a strong field ligand. 	1
28.	(a)(i) Partial double bond character due to resonance in phenol and no resonance in	
	methanol / sp^2 hybridisation in phenol and sp^3 hybridisation in methanol.	1
	(ii) n-Butane < Ethoxyethane < Butanal < Butanol	1
	(iii) $C_6H_5OCH_3 + HX \longrightarrow C_6H_5OH + CH_3X$	1
	OR	
	(b) (i) $H_{3}-CH_{2}-\ddot{O}-H + H^{+} \longrightarrow CH_{3}-CH_{2}-\ddot{O}-H$	1⁄2
	$CH_{3}-CH_{2}-\overset{\cdots}{O}-H + H^{+} \longrightarrow CH_{3}-CH_{2}-\overset{\cdots}{O}-H$ $CH_{3}CH_{2}-\overset{\cdots}{O}: + CH_{3}-CH_{2}-\overset{\leftarrow}{O} \overset{H}{H} \rightarrow CH_{3}CH_{2}-\overset{\bullet}{O} - CH_{2}CH_{3} + H_{2}O$ H	1
	$CH_{3}CH_{2} \xrightarrow{+} O - CH_{2}CH_{3} \longrightarrow CH_{3}CH_{2} - O - CH_{2}CH_{3} + H^{+}$ H (ii)	1⁄2
	$CH_{3}-CH=CH_{2} \xrightarrow{1.(H-BH_{2})_{2}} CH_{3}-CH_{2}-CH_{2}-OH$	1
29.	(a)	
	$\bigcup_{X_2} \stackrel{Y_2}{\longrightarrow} \stackrel{X_2}{\longrightarrow} \stackrel{X_2}{\longrightarrow} \stackrel{X_2}{\longrightarrow} \stackrel{Y_2}{\longrightarrow} \stackrel{X_3}{\longrightarrow} \stackrel{Y_2}{\longrightarrow} \stackrel{Y_2}$	1
	X = Cl, Br, CN	
	(b) Combination of inductive effect and solvation effect / Due to greater H-bonding with water molecules, (CH ₃) ₂ NH shows more hydration or solvation effect.	1+1
30.	(a) Rate of reaction = $-\frac{1}{2} \frac{\Delta[N_2O_5]}{\Delta t}$	1⁄2

XII_39_043_56/5/1_Chemistry # Page-**5**

🕀 www.studentbro.in

	$=\frac{1}{2} \times 1.4 \times 10^{-3} = 0.7 \times 10^{-3} \text{ M s}^{-1} \text{ or } 7 \text{ X 10}^{-4} \text{ M s}^{-1}$	1⁄2
	(Unit may be ignored)	1⁄2
	(b) $t = \frac{2 \cdot 303}{k} \log \frac{[R]_0}{[R]}$	
		1⁄2
	$t_{99\%} = \frac{2 \cdot 303}{k} \log \frac{100}{1} = \frac{2 \cdot 303}{k} \log 100$	1/2
	$t_{90\%} = \frac{2 \cdot 303}{k} \log \frac{100}{10} = \frac{2 \cdot 303}{k} \log 10$	
		1/2
	$t_{99\%} / t_{90\%} = \frac{\log 100}{\log 10} = 2$	
	SECTION- D	
31.		1
	 (a) Because of the formation of planar carbocation / sp² hybridized carbocation. (b) Due to the +I effect / electron-releasing nature of the ethyl group in ethanol. 	1
	(c) (i) CH ₃ CH ₂ I	1
	(ii)	
	\bigcirc - CH ₂ - Cl	1
	OR	
	 (c) (i) 1- Bromopentane < 2-Bromo-2-methylbutane. 	1
	(ii) 1-Bromo-3-methylbutane < 2-Bromo-3-methylbutane < 2-Bromo-2-methylbutane.	1
32.	(a) Award full mark if the question is attempted (Error in question).	1
	(b)	
	$\alpha = \frac{\Lambda_m}{\Lambda^\circ}$	
	$\alpha = 141/150 = 0.94$	1
	(c)	
	• More	1+1
	• Mobility of H^+ more than K^+ .	
	(Data given in the paper does not support the answer to the above question, award full mark if attempted)	
	OR	
	(c)	
	• Similarity: \wedge_m increases with dilution for both electrolytes.	
	Difference : For KCl the \wedge_m increases gradually whereas for CH ₃ COOH, \wedge_m increases	
	steeply on dilution / In case of CH ₃ COOH, \bigwedge_{m}° cannot be obtained by extrapolation of	
	$\wedge_{\rm m}$ to zero concentration whereas for KCl it can be obtained / graphical explanation.	1 + 1

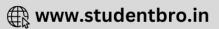
XII_39_043_56/5/1_Chemistry # Page-**6**

	SECTION-E	
33.	(a) (i) H H H O	
	$H \rightarrow H \rightarrow$	
	н н ок	4
	A (or any other suitable reaction)	1
	(or any other suitable reaction) (ii) Carboxylic acids have strong hydrogen bonding whereas aldehydes and ketones have weak dipole-dipole interactions.	1
	(iii) $A = CH - C - CH - CH - CH - CH - CH - CH $	
	$A = CH_3 - C_1 - CH_2 - CH_2$	1
	$CH = C = CH = CH = CH = NaOH + I_2$	
	$CH_{3} - C - CH_{2}CH_{2}CHO \xrightarrow{NaOH + I_{2}} CHI_{3}$ $\xrightarrow{\text{heat}} Yellow ppt$	1
	0 Fellow ppt	
	$CH_3 - C - CH_2CH_2CHO \xrightarrow{[Ag(NH_3)_2]^+, OH^-}_{Warm} CH_3C - CH_2 - CH_2 - COO^- + Ag \downarrow$	
	warm for sing the second sing t	1
	0	
	OR	
	(b) (i) Add NaHCO ₃ solution to both compounds, ethanoic acid will give the brisk	1
	effervescence of CO_2 while ethanal does not (or any other suitable chemical test). (Award full marks if the question is attempted because there is a misprint in the question	
	paper).	1
	(ii) due to resonance stabilization of the conjugate base formed / the strong electron- withdrawing effect of the carbonyl group.	-
	(iii)(1) A = CH ₃ COOC ₂ H ₅ / Ethyl ethanoate / Ethyl acetate,	1
	$B = CH_3COOH / Ethanoic acid / Acetic acid,$	1 1/2
	$C = CH_3CH_2OH / Ethanol / Ethyl alcohol.$	1⁄2
	(2) B, due to the more extensive association of carboxylic acid molecules through strong hydrogen bonding.	1/2, 1/2
34.	(a)	
	(i) Dissociation of NaCl/more number of particles in NaCl solution / Value of 'i' for NaCl is greater than that of glucose.	1
	(ii) $\frac{p^o - p}{p^o} = x_2$	
	$=\frac{n_2}{n_2+n_1} \qquad (n_1 = w_A / M_A = 78/M_A)$	1/2
	$p = 0.9 p^{o}$	
	$\frac{p^{o} - 0.9 p^{o}}{p^{o}} = \frac{w/50}{w/50 + 1} \qquad \left[n_{1} = \frac{78}{78} = 1 \right]$	1
	$0 \cdot 1 \left(\frac{W}{50} + 1\right) = \frac{W}{50}$	
	w = 5.55g (or 5g if dilute solution is considered)	1⁄2
	(Full marks may be awarded if the student substitutes M _A for molar mass as the molar	

CLICK HERE

》

XII_39_043_56/5/1_Chemistry # Page-7



mass of benzene is not given in the question).	
(iii) $\Delta T_b = i K_b m$	1/2
i = 3	1/2
$\Delta T_{b} = 3 \times 0.512 \times \frac{10}{95} \times \frac{1000}{200}$	1⁄2
$\Delta T_{b} = 0.81 \text{ K or }^{\circ}\text{C}$	1/2
OR	
(b) (i) Ethanoic acid molecules associate to form dimer so th nearly reduced to half.	e number of particles are 1
(ii) $\pi = \mathbf{i} \mathbf{CRT}$	1/2
i = 3	1/2
$\pi = 3 \times \frac{2 \cdot 32 \times 10^{-2}}{174 \times 2} \times 0.082 \times 298$	1/2
(iii) $\begin{aligned} &= 4 \cdot 88 \times 10^{-3} \text{ atm} \\ &\Delta \mathbf{T_h} = \mathbf{K_f} \frac{\mathbf{W}_2}{\mathbf{T_h}} \times \frac{1000}{\mathbf{T_h}} \end{aligned}$	1⁄2
$M_2 W_1$	1⁄2
$0.512 = 5.12 \times \frac{25.6}{M_2} \times \frac{1000}{1000}$	1/2
$M_2 = 256$	1/2
$S \times x = 256$	/2
$32 \times x = 256$	
$x = \frac{256}{32} = 8$ i.e. S ₈	1/2
35. (a) Three unpaired electrons.	
(b) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + 3\operatorname{H}_2\operatorname{S} + 8\operatorname{H}^+ \longrightarrow 2\operatorname{Cr}^{3+} + 3\operatorname{S} + 7\operatorname{H}_2\operatorname{O}$	1
(c)	
(i) Mn^{2+} has stable half-filled d ⁵ configuration. Fe ²⁺ (3d ⁶) can give Fe ³⁺ (3d ⁵ , stable configuration).	n lose one electron easily to 1
 (ii) Due to high enthalpy of atomization and low hydration e (iii) Eu²⁺ has the tendency to change to common oxidation st 	1
if the question is attempted as the given electronic configuration	tion is of Eu.

* * *

XII_39_043_56/5/1_Chemistry # Page-**8**

